Technology

Researcher uses light to detect explosives

Warsaw, March 20, 2020. The deserted Chopin airport in Warsaw, March 20, during the epidemic threat in Poland in connection with the coronavirus pandemic (kk/doro) PAP/Kalbar
Warsaw, March 20, 2020. The deserted Chopin airport in Warsaw, March 20, during the epidemic threat in Poland in connection with the coronavirus pandemic (kk/doro) PAP/Kalbar

A new method for detecting explosives and narcotics with the use of light is being developed at the Military University of Technology.

By using Surface Enhanced Raman Spectroscopy (SERS) equipped with a laser, scientist Malwina Liszewska says she hopes to be able to save travellers from attack.

MOLECULE AND ITS LIGHT 'FINGERPRINT'

Currently, Raman spectroscopy is used to detect relatively large amounts of explosives or other hazardous substances. The substance is illuminated by laser radiation and then it is identified.

Portable Raman spectrometers are also used at airports and in other public spaces, where a package, a bag or a bottle with powder may be left.

PhD student Liszewska said: “The molecules of the substance scatter the light and the Raman effect occurs, when the energy of the photon changes. Without going into details, the scattered light falls on the detector and is converted into a spectrum. It's like a fingerprint of a molecule.

The problem is that bombers also use home-made explosive devices, such as a closed can filled with hazardous material. Only traces of explosive substances, invisible to the naked eye, are left on the surface of the package.

spectrometer

Mini Raman spectrometer IDRaman next to a mobile phone, credit: M.Liszewska

But with Surface Enhanced Raman Spectroscopy, scientists use a special substrate or a stick with nanoparticles which can be used to wipe a spot or part of an object that could potentially be stained with explosives. Then a measurement is made that explains what the examiners are dealing with. The method could be used in medicine, industry or forensics.

REMOTE MEASUREMENT TO PROTECT HUMANS

Liszewska plans to extend her research to include as many explosives as possible and has created a ‘libraries of spectra of hazardous substances’. Such libraries would be uploaded to a computer controlling the spectrometer and during the test, the software will compare the spectrum of an unknown substance with that in the database.

A portable Raman spectrometer with the new substrate in the form of a stick on a robot would make it possible to remotely detect trace amounts of hazardous materials. A robot supporting the work of EOD specialists or fire fighters could, in a safe way for the operator, sample the surface of a suspicious object with a SERS stick, and then analyse it with a Raman spectrometer.

PAP - Science in Poland, Karolina Duszczyk

kol/ zan/ kap/

tr. RL

The PAP Foundation allows free reprinting of articles from the Nauka w Polsce portal provided that we are notified once a month by e-mail about the fact of using the portal and that the source of the article is indicated. On the websites and Internet portals, please provide the following address: Source: www.scienceinpoland.pl, while in journals – the annotation: Source: Nauka w Polsce - www.scienceinpoland.pl. In case of social networking websites, please provide only the title and the lead of our agency dispatch with the link directing to the article text on our web page, as it is on our Facebook profile.

More on this topic

  • Credit: Adobe Stock

    Touch screens without problematic indium

  • Photo from Marek Pawłowicz's archive

    Krakow University of Technology engineer designs body of new Bugatti car

Before adding a comment, please read the Terms and Conditions of the Science in Poland forum.