Szansa na zupełnie nowe "druty" przewodzące prąd

Fot. Fotolia
Fot. Fotolia

Zastąpienie "drutów", które każdy z nas ma w domu, nowymi, niepowodującymi strat prądu nadprzewodnikami - taki efekt mogą dać badania zespołu dr. hab. Tomasza Klimczuka. Badacz jest już współodkrywcą pięciu nadprzewodników, a teraz pracuje nad dwiema kolejnymi metodami ich odkrywania.

Nad nowymi drogami odkrywania materiałów nadprzewodzących pracuje zespół dra hab. Tomasza Klimczuka z Wydziału Fizyki Technicznej i Matematyki Stosowanej Politechniki Gdańskiej.

\"Jeśli staniemy w miejscu i nie będziemy szukali nowych związków i materiałów, to z całą pewnością nie będzie postępu technologicznego\" – mówi dr hab. inż. Tomasz Klimczuk. \"Szukamy nowych nadprzewodników, bo są po prostu potrzebne\" - tłumaczy i dodaje, że świat czeka na to, żeby zastąpić >druty<, które każdy z nas ma w domu, nowymi, niepowodującymi strat prądu.

Nadprzewodniki - czytamy na stronie internetowej Politechniki Gdańskiej - to materiały, które trzeba intensywnie chłodzić ciekłym helem lub ciekłym azotem, ponieważ dopiero poniżej tzw. temperatury krytycznej nie wykazują one oporu elektrycznego. Oznacza to, że prąd elektryczny powstały w pętli wytworzonej z takiego materiału będzie płynął bez strat, dopóki pętla ta będzie pozostawać poniżej temperatury krytycznej. Obecnie nadprzewodniki wykorzystywane są np. w urządzeniach medycznych do obrazowania magnetycznego.

\"Materiały nadprzewodzące można odkrywać w różny sposób, najbardziej znana jest droga eliminacji polegająca na testowaniu i modyfikowaniu dużej liczby istniejących związków\" - informuje Politechnika Gdańska.

\"W ten sposób, w trakcie stażu podoktorskiego w laboratorium na Princeton University, prowadząc syntezę blisko dwóch tysięcy próbek, udało mi się odkryć swój pierwszy naprawdę ciekawy, bo egzotyczny nadprzewodnik. W sumie jestem współodkrywcą pięciu nadprzewodników. Chociaż nie znalazły one zastosowania praktycznego, bo ich temperatura krytyczna jest zbyt niska, mam nadzieję, że dołożyliśmy cegiełkę do lepszego zrozumienia zjawiska nadprzewodnictwa\" – mówi kierownik projektu.

Zespół dr. Klimczuka, w skład którego wchodzą chemik ciała stałego prof. Robert Cava z Princeton University oraz krystalografka i chemik ciała stałego prof. Weiwei Xie z Louisiana State University, planuje opracowanie dwóch nowych metod odkrywania nadprzewodników.

\"Zauważyliśmy, że klastry glinu powodują stabilizację nadprzewodnictwa. Chcemy iść tą drogą, dlatego w projekcie opracujemy sposób syntezy nowych, bardziej złożonych związków na bazie atomów glinu. To pierwsza metoda, jaką proponujemy\" – wyjaśnia Klimczuk.

Druga droga będzie polegać na tym, że naukowcy zajmą się wytwarzaniem nowych materiałów, które występują w strukturze antyperowskitu. Szereg bardzo ważnych nadprzewodników krystalizuje w strukturze tego typu.

\"Antyperowskit to typ struktury krystalicznej, w której najmniejszy klocek materii - komórka elementarna - ma postać sześcianu. W narożach sześcianu znajdują się duże atomy jednego typu, na ścianach nieznacznie mniejsze atomy innego typu i wreszcie w centrum powstaje maleńka luka, która może być zapełniona węglem, borem lub azotem. Jesteśmy przekonani, że wiele tych związków wciąż czeka na odkrycie\" – tłumaczy dr Klimczuk.

Jak informuje gdańska uczelnia, związki będą typowane i syntetyzowane na PG na podstawie nieskomplikowanych obliczeń, tzw. współczynnika dopasowania. Naukowcy są przekonani, że część z proponowanych związków uda się otrzymać podczas syntezy w warunkach podwyższonego ciśnienia. Tego typu synteza będzie prowadzona na Princeton University. Dokładne badania krystalograficzne zostaną wykonane na Louisiana State University.

Badania otrzymały finansowanie w wysokości blisko 385,5 tys. zł z programu HARMONIA Narodowego Centrum Nauki. Projekt rozpocznie się wiosną br. i potrwa dwa lata.

PAP - Nauka w Polsce

ekr/ mrt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Fot. Adobe Stock

    Ekspert: Polski teleskop poleci w przyszłym roku na orbitę Księżyca

  • Na zdj. od lewej: mgr inż. Stefania Wolff (WFTiMS PG i IMP PAN), mgr Angelika Łepek (WFTiMS PG), prof. Jacek Ryl (WFTiMS PG), dr hab. inż. Katarzyna Siuzdak, prof. IMP PAN (IMP PAN), dr inż. Wiktoria Lipińska (IMP PAN, absolwentka PG), dr hab. inż. Andrzej Nowak, prof. PG (WChem PG). Fot. Krzysztof Mystkowski / Politechnika Gdańska

    Naukowcy z Politechniki Gdańskiej zamienili kapustę pekińską w materiał do sensorów

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera