Od materii do antymaterii i z powrotem – tryliony razy na sekundę

Mezony Bs0 oscylują między postacią materialną, zbudowaną z kwarka dziwnego s i antykwarka pięknego b bar, a postacią antymaterialną, złożoną z kwarka pięknego b oraz antykwarka dziwnego s bar. Źródło: IFJ PAN
Mezony Bs0 oscylują między postacią materialną, zbudowaną z kwarka dziwnego s i antykwarka pięknego b bar, a postacią antymaterialną, złożoną z kwarka pięknego b oraz antykwarka dziwnego s bar. Źródło: IFJ PAN

Istnieją cząstki, które mogą zachowywać się jak reprezentanci raz świata materii, a raz świata antymaterii. O pomiarze ekstremalnej szybkości oscylacji takich cząstek między obu światami donosi międzynarodowa grupa naukowców pracujących przy eksperymentach w detektorze LHCb. Grupą kierowała dr Agnieszka Dziurda z IFJ PAN w Krakowie.

Jak dziecko na huśtawce, raz wychylające się w przód, raz w tył, tak niektóre cząstki potrafią z nieprawdopodobną szybkością wielokrotnie zmieniać swoje właściwości, w jednej chwili stając się przedstawicielami świata materii, by w kolejnej zachowywać się jak antymateria. Oscylacje cech cząstek między materią a antymaterią uchodzą za jedno z najbardziej fascynujących zjawisk mechaniki kwantowej - opisano w komunikacie Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie.

W przypadku mezonów znanych jako Bs0 oscylacje te udało się zmierzyć z bezprecedensową dokładnością. O wynikach nietuzinkowego pomiaru poinformowała grupa naukowców realizujących eksperymenty w detektorze LHCb przy Wielkim Zderzaczu Hadronów. Artykuł opisujący ich pracę ukazał się na łamach czasopisma „Nature Physics” (https://doi.org/10.1038/s41567-021-01394-x).

„Pierwszy pomiar oscylacji mezonów Bs0 przeprowadzono jeszcze w 2006 roku, w ramach eksperymentu CDF w amerykańskim laboratorium Fermilab. Nam udało się teraz poprawić dokładność pierwotnego pomiaru aż o dwa rzędy wielkości!” - mówi dr Agnieszka Dziurda z IFJ PAN, kierownik międzynarodowego zespołu fizyków, który prowadził opisane badania.

Jak wyjaśniono w komunikacie, składniki materii tworzące widzialny Wszechświat to głównie kwarki dolne i górne, elektrony oraz neutrina elektronowe. Wewnątrz Modelu Standardowego, złożonego narzędzia teoretycznego opisującego świat w skalach atomowych i subatomowych, cząstki te są zgrupowane w jedną generację. Wiadomo, że istnieją jeszcze dwie inne generacje. Obie zawierają cząstki o podobnych właściwościach co pierwsza, tyle że w kolejnych generacjach coraz bardziej masywne.

W Modelu Standardowym każda cząstka materii ma swój odpowiednik w postaci antycząstki różniącej się głównie znakiem ładunku elektrycznego (w przypadku elektrycznie neutralnych neutrin istotne są inne cechy kwantowe). Kwarki nie lubią samotności i zawsze łączą się z innymi w zlepki. Najprostsze z nich to mezony, czyli pary zbudowane z kwarka i jakiegoś antykwarka (niekoniecznie tego samego rodzaju).

„Mezony mogą przenosić ładunek elektryczny, lecz nie muszą. Te pozbawione ładunku elektrycznego, określane jako neutralne, wykazują frapującą cechę: oscylują między postacią materialną a antymaterialną. My skupiliśmy się na analizie częstotliwości oscylacji neutralnych mezonów zawierających kwark piękny b z trzeciej generacji i kwark dziwny s z drugiej, oznaczonych jako Bs0” - tłumaczy dr Dziurda.

Jako cząstki niestabilne, mezony szybko się rozpadają. Nie inaczej jest z mezonami Bs0, których żywot w omawianym eksperymencie kończył się po pojedynczych pikosekundach (to ułamek sekundy z 12 zerami po przecinku). W tym czasie mezony Bs0 pokonywały drogę długości mniej więcej jednego centymetra i, jak się okazało, kilkukrotnie oscylowały.

Od strony technicznej pomiary zjawiska o tak wielkiej częstotliwości okazały się niezwykle trudne. Wymagały zwłaszcza głębokiego zrozumienia technik eksperymentalnych zastosowanych w detektorze, te mogły bowiem zaburzać pomiar. Dopiero dysponując tą wiedzą fizycy byli w stanie precyzyjnie odtworzyć tor ruchu zarejestrowanych mezonów oraz zidentyfikować cząstki, na jakie te się rozpadły - opisano w komunikacie IFJ PAN.

„Mechanika kwantowa przewiduje, że produkty rozpadu mezonu Bs0 muszą być różne w zależności od tego, czy w chwili rozpadu znajdował się on w stanie materialnym, czy antymaterialnym. Zatem dopiero po zarejestrowaniu i zidentyfikowaniu produktów rozpadu danego mezonu mogliśmy ustalić, czy rozpadł się on jako reprezentant świata materii, czy antymaterii. Połączenie tej wiedzy z informacją o naturze cząstki w momencie produkcji pozwoliło nam na pomiar częstotliwości oscylacji” - wyjaśnia dr Dziurda.

Poddane analizie dane dotyczyły mezonów Bs0 powstałych w zderzeniach proton-proton o sumarycznej energii 13 teraelektronowoltów, zarejestrowanych w detektorze LHCb w latach 2015-2018. Ostatecznie naukowcom udało się ustalić, że mezony Bs0 oscylują między materią a antymaterią trzy tryliony razy na sekundę, czyli 300 razy szybciej niż oscyluje typowy zegar atomowy zbudowany z użyciem cezu.

Wynik otrzymany przez fizyków z eksperymentu LHCb - podkreślono w komunikacie -jest pomiarem o szerszym znaczeniu. "Z jednej strony na nowym poziomie dokładności zgadza się z przewidywaniami mechaniki kwantowej i stanowi jej piękną ilustrację. Z drugiej, zmierzona częstotliwość oscylacji mezonów Bs0 istotnie zawęża obszary poszukiwań nieznanych i nieopisanych przez Model Standardowy cząstek, także tych sugerowanych przez wielu teoretyków w celu wyjaśnienia obserwowanych w ostatnich latach anomalii. Być może ślady tej nowej fizyki uda się wykryć, gdy w 2022 roku zmodernizowany detektor LHCb wznowi rejestrację zderzeń" - podsumowano.

PAP - Nauka w Polsce

agt/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Typowy dołek kriokonitowy. (Źródło: IFJ PAN)

    Radioaktywny pluton się nie ukryje. Naukowcy znajdują go nawet na lodowcach

  • W reakcji biorą udział występujący w naturze wodorosiarczek (HS-) oraz związek organiczny, zawierający pierścienie aromatyczne, zdolny do absorpcji promieniowania UV. Pod wpływem energii promieniowania UV następuje ultraszybki transfer elektronu z wodorosiarczku do związku organicznego, co prowadzi do dalszych selektywnych transformacji chemicznych. Fot. materiały prasowe

    Polacy opisali nowy typ reakcji chemicznej przy tworzeniu cegiełek DNA

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera