Na UW powstała nowatorska metoda pomiaru magnetyzmu

Fot. Adobe Stock
Fot. Adobe Stock

Naukowcy z Uniwersytetu Warszawskiego w unikalny sposób wykorzystali nanodiamenty i światłowody do precyzyjnego pomiaru pól magnetycznych. Ich wynalazek może znaleźć zastosowanie m.in. w biotechnologii, spintronice, technologiach kwantowych.

Zespół z Instytutu Mikroelektroniki i Fotoniki na łamach pisma „Sensors and Actuators A: Physical” przedstawił nowatorski system precyzyjnego pomiaru pola magnetycznego. W swoim pomyśle badacze wykorzystują specjalny rodzaj diamentów i nietypowe światłowody.

Jak wyjaśniają, optyczne pomiary magnetyzmu oferują dokładność nieosiągalną innymi metodami, a co więcej - działają nawet w obecności silnego tła, np. pola magnetycznego Ziemi.

„Magnetometria za pomocą diamentu już znalazła zastosowanie, ale przyrządy, które taki pomiar realizują – mikroskopy konfokalne – są skomplikowanymi i najczęściej drogimi urządzeniami, co ogranicza ich zastosowanie do warunków laboratoryjnych. Mimo to zastosowania te są niezwykle atrakcyjne – możliwy jest np. pomiar rozkładu pola magnetycznego (który w prosty sposób przekłada się na pomiar temperatury) wewnątrz pojedynczych żywych komórek, albo w układach scalonych wykorzystujących tzw. spintronikę i technologie kwantowe” – o tego typu metodach opowiada PAP jeden z autorów nowej publikacji, prof. Mariusz Klimczak.

Nowość polega na połączeniu specjalnych diamentów zawierających centra barwne NV i światłowodów antyrezonansowych.

„Centra barwne NV, inaczej azot-wakancja, to takie defekty sieci krystalicznej diamentu, w których miejsce jednego atomu węgla w tej sieci zajmuje atom azotu, a miejsce obok pozostaje puste (tzw. „wakancja” albo „wakans”). W zależności od ilości elektronów wokół centrum NV, może ono mieć ładunek obojętny, dodatni lub ujemny(-). Najistotniejszą cechą centrów barwnych NV(-) jest to, że pewne charakterystyki ich emisji czerwonego światła zależą od pola magnetycznego, w jakim znajduje się diament” – wyjaśnia naukowiec.

Światłowody rezonansowe to natomiast takie transmitujące światło włókna, których rdzeń - zamiast zawierać szkło - jest pusty. Otacza go płaszcz z bardzo cienkich szklanych membran.

„Zaledwie kilka grup na świecie potrafi wytwarzać światłowody antyrezonansowe z rdzeniem powietrznym (np. brytyjski University of Southampton czy University of Bath, jest jeszcze garstka grup z Francji, Niemiec i Chin). Te zastosowane w naszych badaniach powstały w naszej grupie w Warszawie” – podkreśla prof. Klimczak.

Jego zespół na wewnętrznej ściance takich światłowodów umieszcza reagujące na pole magnetyczne i wpływające na transport światła diamentowe nanodrobiny. Układ złożony z takich światłowodów może nie tylko mierzyć siłę pola magnetycznego, ale także jego gradient, czyli zmiany w przestrzeni.

„Wyniki te uzyskaliśmy w warunkach laboratoryjnych, którym daleko do praktycznego zastosowania np. przez specjalistów jakiejś dziedziny elektroniki czy biotechnologii. Niemniej jednak pokazują one nowy potencjał unikatowych światłowodów, dotychczas poważniej rozważanych jedynie w dość niszowych aplikacjach telekomunikacyjnych” – zwraca uwagę naukowiec.

Więcej informacji w artykule źródłowym. (PAP)

Marek Matacz

mat/ bar/

Fundacja PAP zezwala na bezpłatny przedruk artykułów z Serwisu Nauka w Polsce pod warunkiem mailowego poinformowania nas raz w miesiącu o fakcie korzystania z serwisu oraz podania źródła artykułu. W portalach i serwisach internetowych prosimy o zamieszczenie podlinkowanego adresu: Źródło: naukawpolsce.pl, a w czasopismach adnotacji: Źródło: Serwis Nauka w Polsce - naukawpolsce.pl. Powyższe zezwolenie nie dotyczy: informacji z kategorii "Świat" oraz wszelkich fotografii i materiałów wideo.

Czytaj także

  • Fot. Adobe Stock

    Ekspert: Polski teleskop poleci w przyszłym roku na orbitę Księżyca

  • Na zdj. od lewej: mgr inż. Stefania Wolff (WFTiMS PG i IMP PAN), mgr Angelika Łepek (WFTiMS PG), prof. Jacek Ryl (WFTiMS PG), dr hab. inż. Katarzyna Siuzdak, prof. IMP PAN (IMP PAN), dr inż. Wiktoria Lipińska (IMP PAN, absolwentka PG), dr hab. inż. Andrzej Nowak, prof. PG (WChem PG). Fot. Krzysztof Mystkowski / Politechnika Gdańska

    Naukowcy z Politechniki Gdańskiej zamienili kapustę pekińską w materiał do sensorów

Przed dodaniem komentarza prosimy o zapoznanie z Regulaminem forum serwisu Nauka w Polsce.

newsletter

Zapraszamy do zapisania się do naszego newslettera